On Rigidly Scalar-Flat Manifolds

نویسندگان

  • Boris Botvinnik
  • Brett McInnes
چکیده

Witten and Yau (hep-th/9910245) have recently considered a generalisation of the AdS/CFT correspondence, and have shown that the relevant manifolds have certain physically desirable properties when the scalar curvature of the boundary is positive. It is natural to ask whether similar results hold when the scalar curvature is zero. With this motivation, we study compact scalar flat manifolds which do not accept a positive scalar curvature metric. We call these manifolds rigidly scalar-flat. We study this class of manifolds in terms of special holonomy groups. In particular, we prove that if, in addition, a rigidly scalar flat manifold M is Spin with dimM ≥ 5, then M either has a finite cyclic fundamental group, or it must be a counter example to Gromov-LawsonRosenberg conjecture. AMS Classification numbers Primary: 57R15 53C07 Secondary: 53C80 81T13

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

Warped product and quasi-Einstein metrics

Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...

متن کامل

Low dimensional flat manifolds with some classes of Finsler metric

Flat Riemannian manifolds are (up to isometry) quotient spaces of the Euclidean space R^n over a Bieberbach group and there are an exact classification of of them in 2 and 3 dimensions. In this paper, two classes of flat Finslerian manifolds are stuided and classified in dimensions 2 and 3.

متن کامل

Self-dual metrics on toric 4-manifolds: Extending the Joyce construction

Toric geometry studies manifolds M2n acted on effectively by a torus of half their dimension, T . Joyce shows that for such a 4-manifold sufficient conditions for a conformal class of metrics on the free part of the action to be self-dual can be given by a pair of linear ODEs and gives criteria for a metric in this class to extend to the degenerate orbits. Joyce and Calderbank-Pedersen use this...

متن کامل

On Para-sasakian Manifolds Satisfying Certain Curvature Conditions with Canonical Paracontact Connection

In this article, the aim is to introduce a para-Sasakian manifold with a canonical paracontact connection. It is shown that φ−conharmonically flat , φ−W2 flat and φ−pseudo projectively flat para-Sasakian manifolds with respect to canonical paracontact connection are all η−Einstein manifolds. Also, we prove that quasi-pseudo projectively flat para-Sasakian manifolds are of constant scalar curvat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999